您现在的位置是: 网站首页 > 程序设计  > 数据结构 

LSM树(Log Structured Merge Tree)

2020年3月11日 08:00 1257人围观

简介传统关系型数据库使用btree或一些变体作为存储结构,能高效进行查找。但缺点是逻辑上相离很近但物理却可能相隔很远,这就造成大量的磁盘随机读写。磁盘的随机读写比顺序读写慢很多,为了提升IO性能,需要一种能将随机操作变为顺序操作的机制,于是便有了LSM树。LSM树可以进行顺序写磁盘,从而大幅提升写操作,作为代价的是牺牲了一些读性能

讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来

  • 哈希存储引擎是哈希表的持久化实现,支持增、删、改以及随机读取操作,但不支持顺序扫描,对应的存储系统为key-value存储系统。对于key-value的插入以及查询,哈希表的复杂度都是O(1),明显比树的操作O(n)快,如果不需要有序的遍历数据,哈希表就是your Mr.Right

  • B树存储引擎是B树(关于B树的由来,数据结构以及应用场景可以看之前一篇博文)的持久化实现,不仅支持单条记录的增、删、读、改操作,还支持顺序扫描(B+树的叶子节点之间的指针),对应的存储系统就是关系数据库(Mysql等)。

  • LSM树(Log-Structured Merge Tree)存储引擎和B树存储引擎一样,同样支持增、删、读、改、顺序扫描操作。而且通过批量存储技术规避磁盘随机写入问题。当然凡事有利有弊,LSM树和B+树相比,LSM树牺牲了部分读性能,用来大幅提高写性能。

LSM树(Log Structured Merge Tree,结构化合并树)的思想非常朴素,就是将对数据的修改增量保持在内存中,达到指定的大小限制后将这些修改操作批量写入磁盘(由此提升了写性能),是一种基于硬盘的数据结构,与B-tree相比,能显著地减少硬盘磁盘臂的开销。当然凡事有利有弊,LSM树和B+树相比,LSM树牺牲了部分读性能,用来大幅提高写性能。

读取时需要合并磁盘中的历史数据和内存中最近的修改操作,读取时可能需要先看是否命中内存,否则需要访问较多的磁盘文件(存储在磁盘中的是许多小批量数据,由此降低了部分读性能。但是磁盘中会定期做merge操作,合并成一棵大树,以优化读性能)。LSM树的优势在于有效地规避了磁盘随机写入问题,但读取时可能需要访问较多的磁盘文件。

代表数据库:nessDB、leveldb、hbase等

核心思想的核心就是放弃部分读能力,换取写入的最大化能力,放弃磁盘读性能来换取写的顺序性。极端的说,基于LSM树实现的HBase的写性能比Mysql高了一个数量级,读性能低了一个数量级。

LSM操作

LSM树 插入数据 可以看作是一个N阶合并树。数据写操作(包括插入、修改、删除也是写)都在内存中进行,

插入

数据首先会插入内存中的树。当内存树的数据量超过设定阈值后,会进行合并操作。合并操作会从左至右便利内存中树的子节点 与 磁盘中树的子节点并进行合并,会用最新更新的数据覆盖旧的数据(或者记录为不同版本)。当被合并合并数据量达到磁盘的存储页大小时。会将合并后的数据持久化到磁盘,同时更新父节点对子节点的指针。

读取

LSM树 读数据 磁盘中书的非子节点数据也被缓存到内存中。在需要进行读操作时,总是从内存中的排序树开始搜索,如果没有找到,就从磁盘上的排序树顺序查找。

更新

在LSM树上进行一次数据更新不需要磁盘访问,在内存即可完成,速度远快于B+树。当数据访问以写操作为主,而读操作则集中在最近写入的数据上时,使用LSM树可以极大程度地减少磁盘的访问次数,加快访问速度。

删除

LSM树 删除数据 前面讲了。LSM树所有操作都是在内存中进行的,那么删除并不是物理删除。而是一个逻辑删除,会在被删除的数据上打上一个标签,当内存中的数据达到阈值的时候,会与内存中的其他数据一起顺序写入磁盘。 这种操作会占用一定空间,但是LSM-Tree 提供了一些机制回收这些空间。

上一篇: 七大排序算法

下一篇: C++强制类型转换